1. Make a K-W-L Chart about atoms

Know	Want to know	Learned

You have an ELEMENT QUIZ today!

- 1. Write down as many of your elements as you can without looking.
- 2. Quiz your neighbor!
- 3. STOTD

Friday: ELEMENT QUIZ, Start Unit 2: The atom

Atomic Structure and Nuclear Chemistry

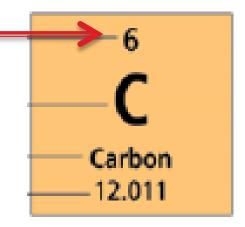
Chapters 3 and 22

Atomic Structure

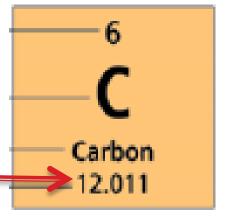
Atom

 The smallest particle of an element that retains the chemical properties <u>Nucleus</u>
 Contains Protons and Neutrons
 Small, Dense, and Positive

•Electron Cloud


Atomic Structure

Particle	Symbol	Location	Relative Charge	Relative Mass (amu)	Change in Number
Electron	$e^{-1}e^{-$	Outside the nucleus	-1	~1/2000 0	Ions
Proton	p^+ ${1 \over 1}H$	Nucleus	+1	1	Elements
Neutron	n^0 $\frac{1}{0}n$	Nucleus	0	1	Isotopes


1 amu (atomic mass unit) = $1.661 \times 10^{-27} \text{ kg}$

- Atomic Number
 - Number of Protons
 - Defines an element
 - Whole number on the periodic table
- Mass Number
 - Mass #= (protons) + (neutrons)
 - Different for each isotope
 - NOT found on the Periodic Table!!!
- Isotopes
 - Atoms of the same element with different masses
 - Different numbers of neutrons
 - All elements exist as a mixture of isotopes

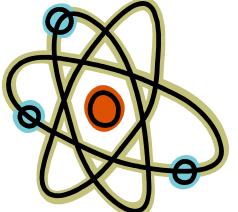
****Phet Simulation**

- The Atomic Mass Unit (amu) was created to measure the mass of p⁺, n⁰, and e⁻.
 - 1 amu = 1/12 the mass of a carbon-12 atom
 - 1.661 x 10⁻²⁷ kg
- Average Atomic Mass
 - Weighted average of atomic masses of all isotopes of an element
 - FOUND ON THE PERIODIC TABLE!!!

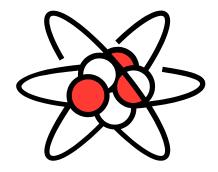
- 2 ways to identify isotopes
 - 1. Hyphen Notation
 - Name Mass #
 - Example: Carbon- 12
 - Example: Carbon- 14
 - 2. Nuclear Notation
 - Helpful to find the number of neutrons

Mass Number Symbol $23 Na^{-23} Na^{-11}$ Atomic Number

		-				
Name	Symbol	Protons	Neutrons	Electrons	Atomic Number	Mass Number
Chlorine– 37						
	¹³⁶ 55 Cs					
		76				186
			115		76	


- 1. I have 25 protons and 23 neutrons. What atom am I?
- 2. I have a mass number of 238 and 146 neutrons. How many protons do I have? What element am I?
- 3. I have 20 protons and 20 neutrons. What atom am I?

Refer to Bellringer


Now you can fill out the "L" portion of the KWL chart about atoms

Reviewing Atomic Structure

- Atoms are made up of 3 particles
 - Protons, Electrons, and Neutrons
 - Called subatomic particles
- The Nucleus

- Small, dense region in the center of an atom
- Contains:
 - Protons and Neutrons
 - All of an atom's positive charge
 - Almost all of an atom's mass.

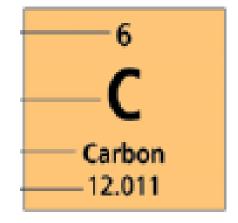
Reviewing Atomic Structure

<u>Proton (p+)</u>

- Charge of +1
- Found inside the nucleus
- Mass of lamu (same as a neutron)
- The number of protons defines an element
 - Change the # of protons and you get a different element
- <u>Neutron (n⁰)</u>
 - No charge
 - Found inside the nucleus
 - Mass of 1 amu (same as a proton)
 - The number of neutrons controls the isotope
 - Change the # of neutrons and you get different isotopes

<u>Electron (e[−])</u>

- Charge of -1
- outside the nucleus
- Mass ~ 0 amu
- The number of electrons controls the electrical charge
 - Change the # of electrons and you get a charge (an ion)


Reviewing Atomic Structure

<u>Atomic Number</u>

- The number of protons
 - This defines each element
- Equals the number of electrons in a neutral atom
- <u>Mass Number</u>
 - The **relative mass** of each atom

Mass # = (Atomic #) + (# of neutrons)

- <u>lsotopes</u>
 - Atoms of the same element
 - With different numbers of neutrons
 - Which means different mass numbers
- All elements have isotopes
- Elements occur naturally as a mixture of isotopes
- <u>Average Atomic Mass</u>
 - Weighted average mass for all isotopes of each element
 - NOT the same as the Mass Number

Bellringer: 2/14/2017

- 1. Describe the 3 subatomic particles in terms of location, Charge, and Mass
- 2. Write Nitrogen-15 in Nuclear Notation. Then determine the following:
 - a) Atomic Number
 - b) Number of Electrons
 - c) Number of Neutrons
 - d) Mass number

<u>Updates:</u>

Tuesday: Average Atomic Mass with Activity Wednesday: Nuclear Chemistry; **PBIS Celebration 4th period** <u>Thursday</u>: Nuclear Chemistry; **Academic Celebration 4th period** <u>Friday</u>: Half-life Activity; ¹/₂ day of school

- Average Atomic Mass
 - Weighted average of all isotopes of an element
 - FOUND ON THE PERIODIC TABLE!!!
 - Tells which isotope is more abundant
 - Chlorine's avg. atomic mass = 35.45 amu
 - Which isotope is more abundant: Cl-35 or Cl-37?
 - Sodium's avg. atomic mass = 22.99 amu
 - Which isotope is more abundant: Na-23 or Na-22?

****Honors: Counting Atoms**

• To Calculate the Average Atomic Mass:

- Multiply the Mass (in amu's) by the abundance for each isotope
- Add the products together

lsotope	Mass	Abundanc e	Average Atomic Mass	
⁶³ Cu	62.930	69.17%	63.546	
⁶⁵ Cu	64.928	30.83%	03.040	

****Honors: Counting Atoms**

Ge-70	69.924	21.23	
Ge-72	71.922	27.66	
Ge-73	72.923	7.73	72.59
Ge-74	73.921	35.94	
Ge-76	75.921	7.44	

****Honors: Counting Atoms**

Isotope	Mass (amu)	Relative abundance
⁶⁹ Ga	68.926	60.108%
⁷¹ Ga	70.925	39.892%

lootopo	Mass	Relative
Isotope	(amu)	abundance
³⁶ Ar	35.97	0.337%
³⁸ Ar	37.97	0.063%
⁴⁰ Ar	39.96	99.6%

BEANIUM!!!

Calculate the average atomic mass for:

laotono	Mass	Relative
Isotope	(amu)	abundance
³⁶ Ar	35.97	0.337%
³⁸ Ar	37.97	0.063%
⁴⁰ Ar	39.96	99.6%

STOTD

Calculate the average atomic mass for:

Isotope	Mass (amu)	Relative abundance
⁶⁹ Ga	68.926	60.108%
⁷¹ Ga	70.925	39.892%

STOTD

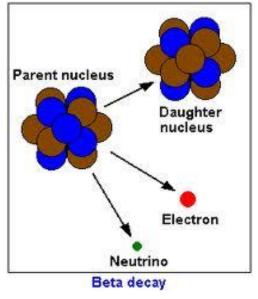
- 1. Compared to the charge and mass of a proton, an electron has:
 - A. The same charge and a smaller mass
 - B. The same charge as the same mass
 - C. An opposite charge and a smaller mass
 - D. An opposite charge and the same mass.
- 2. Which symbols represent atoms that are isotopes?
 - A. C-14 and N-14
 - B. O-16 and O-18
 - C. I-131 and I-131
 - D. Rn-222 and Ra-222
- 3. Write I-131 in nuclear notation.
- 4. How many protons, neutrons and electrons does C-14 have?
- 5. What is the mass number of an atom that has 31 protons, 31 electrons, and 30 neutrons?
- What element is this?
- What isotope is this?

Nuclear Chemistry

****Chemistry Honors****

- In Nuclear Chemistry:
 - Atoms are called **Nuclides**
 - The protons and neutrons are referred to as <u>Nucleons</u>
 - Why? Because the only thing that Nuclear Chemists care about is the NUCLEUS

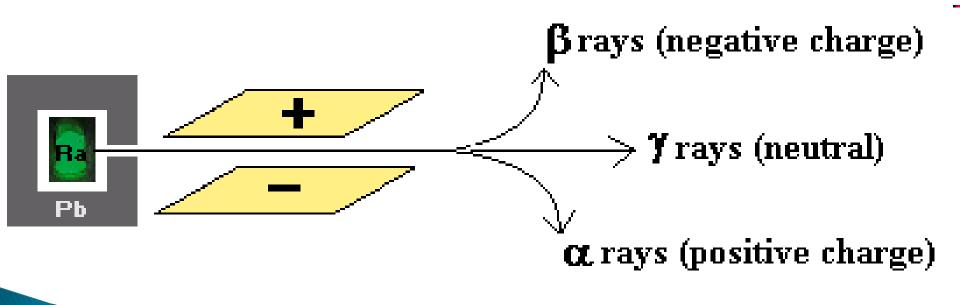
What is Nuclear Chemistry??


The study of the <u>nucleus</u> of an <u>atom</u>

Nuclear Chemistry is all about the stability of the nucleus

- Stable nuclei: have even numbers of (protons and neutrons)
- <u>Unstable nuclei</u>: have uneven numbers of p⁺ and n⁰, these nuclides must go through nuclear radiation

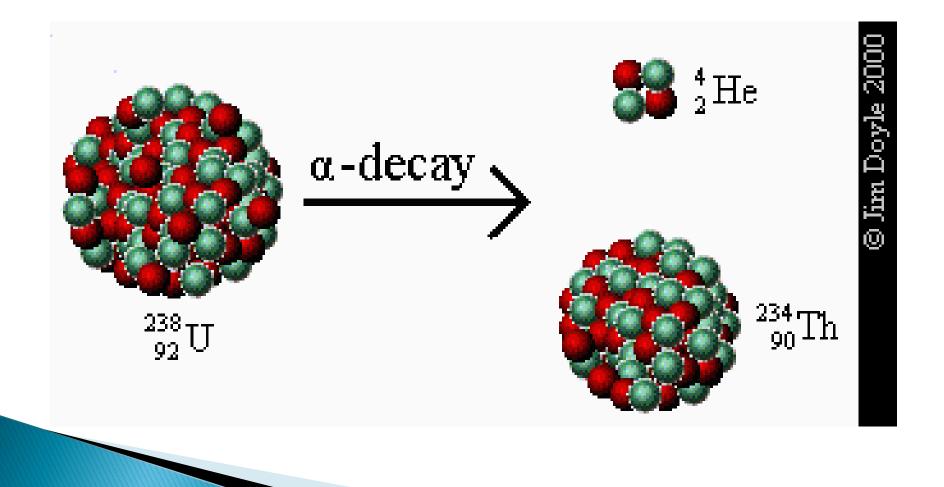
Nuclear Chemistry


- Nuclear Reaction
 - Reactions that change the nucleus (Transmutation)
 - Remember: Change # of protons = New Element!
- Radioactivity
 - Spontaneous emission of radiation
- Radiation
 - Rays and particles that are given off

- 1. How do subatomic particles relate to the periodic table?
- 2. How do you identify isotopes?
- How are mass number, number of neutrons, and isotopes related?
 STOTD

Nuclear Chemistry

- Three types of radiation:
 - 1. Alpha
 - 2. Beta
 - 3. Gamma



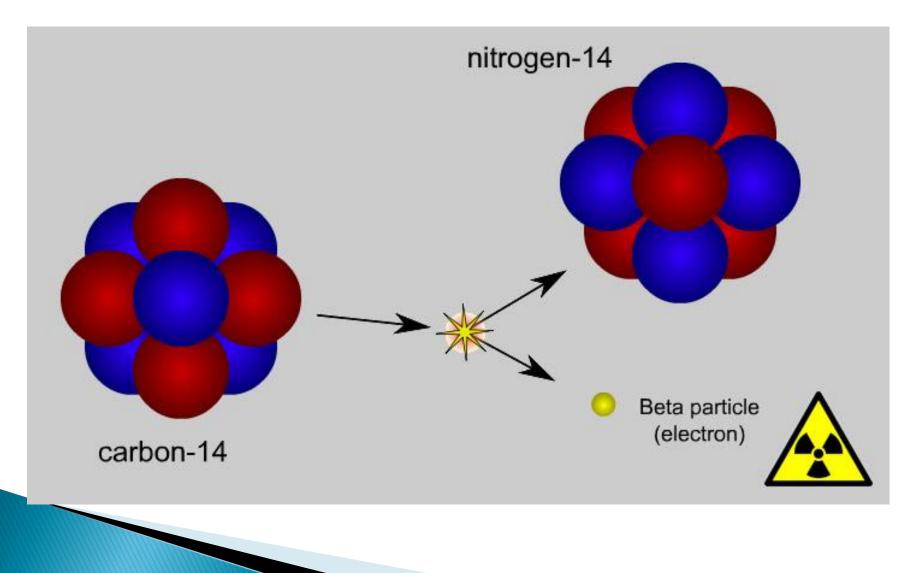
Types of Nuclear Radiation

- Alpha (α) Particle
 - Given off during when both protons and neutrons need to be released (Heavy elements ONLY)
 - Made of 2 p⁺ and 2 n⁰
 - Charge = 2+
 - Mass = 4 amu
 - AKA The Nucleus of Helium!!!
 - Written as either: α or ${}_{2}^{4}He$
 - Least penetrating (weakest)
 - Stopped by paper or clothing

Alpha Decay

Types of Nuclear Radiation

Beta (β) Particle

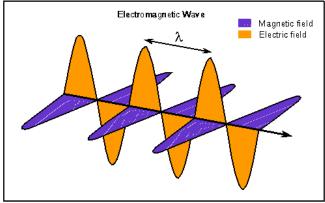

- Given off when there are too many neutrons in the nucleus
- Given off as an Electron!!!
 - Charge = 1-
 - Mass = 0

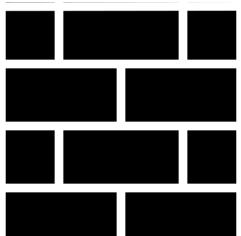
end

- Written as either: ${}^{0}_{-1}e$ or β
- Stopped by a thin sheet of metal
 Al foil

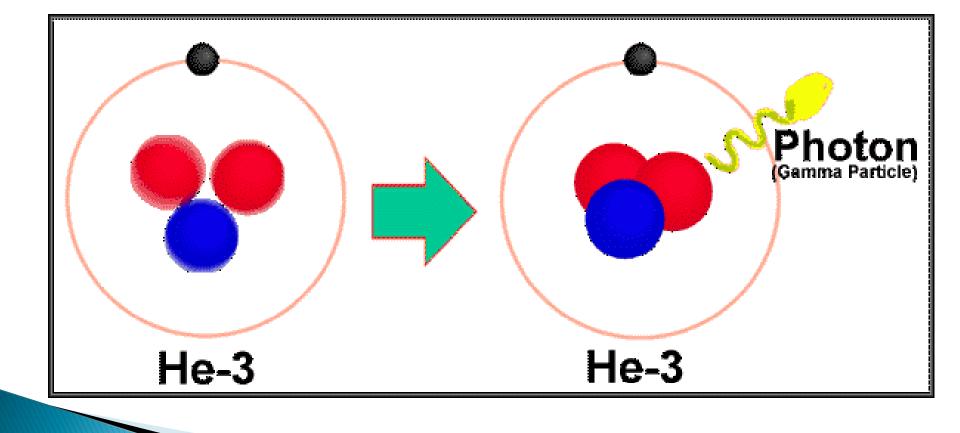
Beta Decay

Types of Nuclear Radiation Gamma (γ) Ray

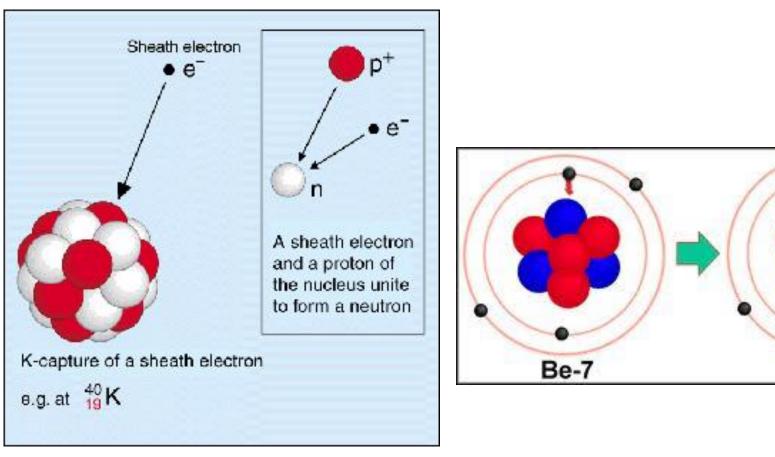

- Produced during all nuclear decay
- High Energy Electromagnetic Wave (Light)
 - No particles
 - Charge = 0
 - Mass = 0
 - Written as:


end

Most penetrating



DOES NOT CREATE A NEW ELEMENT!



Gamma Decay

****Chemistry Honors****

Li-7

Nuclear Equations

- 1. Shows the break down of a radioactive element
- 2. Includes the atomic number and the mass number
- 3. The total mass number and atomic number must be equal on each side of the equation
- 4. Remember Nuclear Notation??

- 1. How can you determine the number of protons an element has?
- 2. How can you determine the number of neutrons an element has?
- 3. An atom has 11 protons and 12 neutrons.
 - a) What element is this?
 - b) Write this isotope in hyphen notation
 - c) Write this isotope in nuclear notation
- 4. STOTD

** You will need a calculator for today.

Nuclear Reactions

Nuclear Equations

- Shows the transmutation
- Total Mass Number and Total Atomic Number must be equal on each side of the equation

$${}^{94}_{41}Nb \rightarrow {}^{0}_{-1}\beta + ? \qquad {}^{210}_{82}Pb \rightarrow {}^{4}_{2}He + ?$$

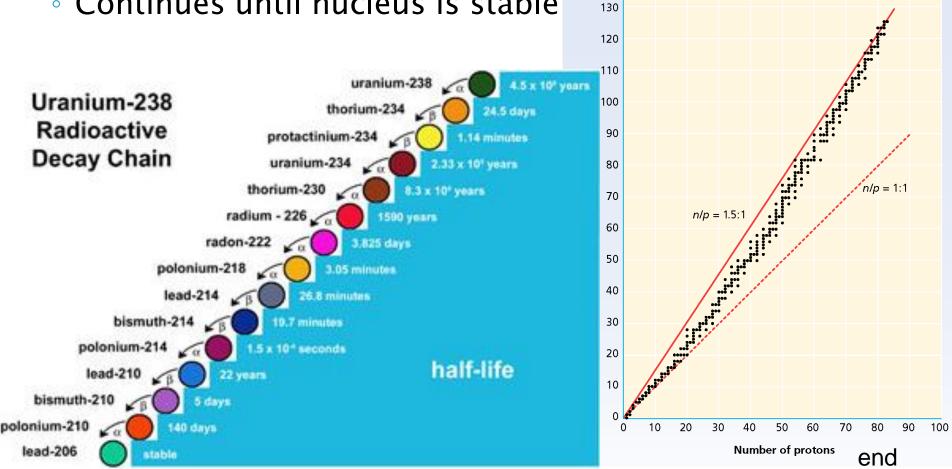
$$^{135}_{53}I \rightarrow ?+^{135}_{54}Xe$$

$$^{237}_{93}Np \rightarrow ?+^{233}_{91}Pa$$

****Honors: Practice Problems:**

- 1. ${}^{27}_{13}\text{AI} + {}^{4}_{2}\text{He} \rightarrow {}^{30}_{15}\text{P} + ____$
- 2. ${}^{99}_{43}\text{Tc} \rightarrow --- + {}^{0}_{-1}\text{e}$
- 3. ${}^{37}_{19}K \rightarrow ---- + {}^{0}_{+1}e$
- 4. ${}^{6}_{3}\text{Li} + {}^{1}_{0}\text{n} \rightarrow {}^{0}_{-1}\text{e} + {}^{4}_{2}\text{He} + ____$

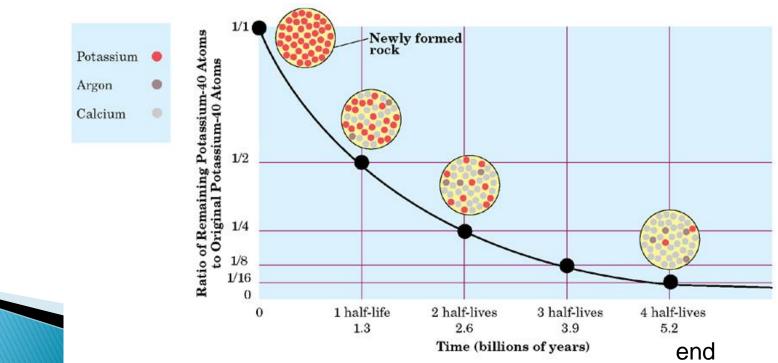
****Chemistry Honors****


- There are a 3 other types of radiation you need to know!
 - 1. <u>Positron</u>
 - a) Released to decrease the number of p⁺
 - b) Mass of 0
 - c) +1 charge
 - d) Written as: $0 \\ +1 e$
 - 2. <u>Neutron</u>

Written as: $\frac{1}{0}n$

 <u>Electron Capture</u>: inner core electron is pulled into the nucleus and combines with a proton to become a neutron

Radioactive Decay


- Radioactive isotopes decay to become more stable
 - Change the n^0 to p^+ ratio 0
 - Continues until nucleus is stable 0

Radioactive Decay

Half-life

- Rate of Decay
- The time for half of the nuclei to decay
- Random event that CANNOT be CHANGED!!!

Formulas for Half-lives

When given number of half lives:

$$\frac{Initial}{Final} = 2^n$$

When looking for number of half lives:

 $h = \frac{\ln(\frac{inital}{final})}{\ln(2)}$

- n = # of half-lives
- Initial mass
- Final mass

Radioactive Decay

- 1. If you had 25 g of gold-198 how much is left after it has gone through 12 half-lives?
- 2. You have 10.0 g of francium-210. How many half-lives must pass for 8.00 g to be left?
- 3. If you start with 200.0 g of Pu-239 and there are 3.125 g left, how many half-lives have passed?

1. ${}^{37}_{19}K \rightarrow --- + {}^{0}_{-1}e$

2. If you start with 200.0 g of Pu-239 and there are 3.125 g left, how many half-lives have passed?

Radiochemical Dating

Half-lives and % abundance allow us to date objects

- The estimated age determines which isotopes are examined
 - Polonium-215
 - Sodium–24
 - Iodine-131
 - Carbon-14
 - Uranium-235
 - Uranium-238

- 0.0018 seconds
- 15 hours
- 8.07 days
- 5730 years
- 704,000,000 years
 - 4,470,000,000 years

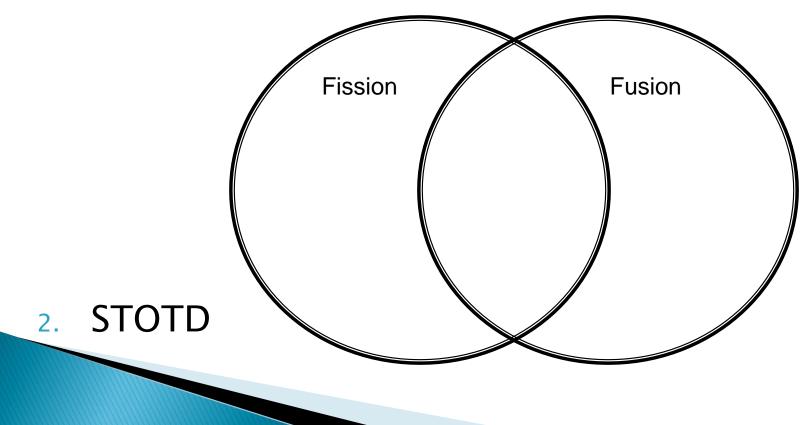
1.
$${}^{99}_{43}\text{Tc} \rightarrow ____ + {}^{0}_{-1}\text{e}$$


2.
$${}^{6}_{3}\text{Li} + {}^{1}_{0}\text{n} \rightarrow {}^{0}_{-1}\text{e} + {}^{4}_{2}\text{He} + ____$$

- 3. How do you identify the type of radiation that took place in a nuclear decay chemical reaction?
- 4. How do you determine the half-life of a radioactive isotope?
- 5. STOTD

Fission vs. Fusion

- > p⁺ are held in the nucleus by a strong Nuclear Force
 - Pulling them apart releases a lot of energy
- Fission
 - Splitting of a nucleus into fragments
 - Used in nuclear power plants and nuclear weapons
 - 1 kg of U-235 = 17,000 kg of coal!!!


Fission vs. Fusion

Fusion

- Combining to form larger nuclei
- Products are generally NOT radioactive
- Used in the Stars and in H–Bombs

1. Make a Venn Diagram to compare and contrast Fission and Fusion. Have a minimum of two facts for each.

1. Write an equation for the alpha decay of Uranium-238

2.	lsotope	Mass	Abundanc e	Average Atomic Mass
	⁶³ Cu	62.930	69.17%	
	⁶⁵ Cu	64.928	30.83%	

3. STOTD

Radiation Detection

- Film badge
 - Wear on your clothes
 - If it changes color you run!
- Geiger counter
 - Detects ionizing radiation
 - Creates an electrical current
- Scintillation counter
 - Detects scintillating light
 - Produces an electrical current

Uses for Radiation

- Medical Radiotracers
 - Track movement inside the body
 - PET scans
- Cancer therapy
- Identification of substances
- Power
- Chemical Radiotracers
- Sterilization

Effects of Radiation

- Effects depend on:
 - Type of radiation
 - Distance from source
 - Time exposed
 - Type of tissue
- The average yearly radiation exposure ~360 mrem/year
- Effects are seen when exposed to >5 rem/year